Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
STAR Protoc ; 5(1): 102879, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38358879

ABSTRACT

Organ-on-a-chip technology incorporating stem cell techniques represents a promising strategy to improve modeling of human organs. Here, we present a protocol for generating a standardized 3D placenta-on-a-chip model using trophoblast derived from human induced pluripotent stem cells (hiPSCs). We describe steps for seeding hiPSCs into multi-chip OrganoPlate devices and on-chip differentiation into trophoblasts against an extracellular matrix under perfused conditions. We then detail procedures for conducting a functional barrier integrity assay, immunostaining, and collecting protein or RNA for molecular analysis. For complete details on the use and execution of this protocol, please refer to Lermant et al. (2023).1.


Subject(s)
Induced Pluripotent Stem Cells , Pregnancy , Female , Humans , Placenta , Trophoblasts , Cell Differentiation , Lab-On-A-Chip Devices
2.
iScience ; 26(7): 107240, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37534160

ABSTRACT

Although recently developed placenta-on-chip systems opened promising perspectives for placental barrier modeling, they still lack physiologically relevant trophoblasts and are poorly amenable to high-throughput studies. We aimed to implement human-induced pluripotent stem cells (hiPSC)-derived trophoblasts into a multi-well microfluidic device to develop a physiologically relevant and scalable placental barrier model. When cultured in a perfused micro-channel against a collagen-based matrix, hiPSC-derived trophoblasts self-arranged into a 3D structure showing invasive behavior, fusogenic and endocrine activities, structural integrity, and expressing placental transporters. RNA-seq analysis revealed that the microfluidic 3D environment boosted expression of genes related to early placental structural development, mainly involved in mechanosensing and cell surface receptor signaling. These results demonstrated the feasibility of generating a differentiated primitive syncytium from hiPSC in a microfluidic platform. Besides expanding hiPSC-derived trophoblast scope of applications, this study constitutes an important resource to improve placental barrier models and boost research and therapeutics evaluation in pregnancy.

3.
Antioxidants (Basel) ; 8(8)2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31426416

ABSTRACT

Oxidative post-translational modifications (oxPTM) of receptors, enzymes, ion channels and transcription factors play an important role in cell signaling. oxPTMs are a key way in which oxidative stress can influence cell behavior during diverse pathological settings such as cardiovascular diseases (CVD), cancer, neurodegeneration and inflammatory response. In addition, changes in oxPTM are likely to be ways in which low level reactive oxygen and nitrogen species (RONS) may contribute to redox signaling, exerting changes in physiological responses including angiogenesis, cardiac remodeling and embryogenesis. Among oxPTM, S-glutathionylation of reactive cysteines emerges as an important regulator of vascular homeostasis by modulating endothelial cell (EC) responses to their local redox environment. This review summarizes the latest findings of S-glutathionylated proteins in major EC pathways, and the functional consequences on vascular pathophysiology. This review highlights the diversity of molecules affected by S-glutathionylation, and the complex consequences on EC function, thereby demonstrating an intricate dual role of RONS-induced S-glutathionylation in maintaining vascular homeostasis and participating in various pathological processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...